Examples of 2D Darcy flows

The following two examples come from [BD].

1. Example : 2D Darcy flow, chessboard pressure

1.1. Input parameters

Notation Quantity Type Unit

κ__

Permeability

order 2 tensor

m2Pa1s1

f(x,y)

Flux source term

scalar function

s1

1.2. Model & Toolbox

We consider a 2D unit square Ω=[0,1]×[0,1] whose boundary is denoted Γ. The following problem is to be solved in Ω.

{u_+κ__p=0in Ωu_=fin Ω

with the additional condition Ωf=0. The pressure is denoted p and the velocity u_. We assume the material permeability is constant, isotropic and unitary, that is κ__=Id__.

Let us define the source term f=u_=Δp to get the analytic solution p(x,y)=sin(2πx)cos(2πy). It yields f(x,y)=8π2sin(2πx)cos(2πy).

This example runs within the Mixed Poisson toolbox with prescribed parameters.

1.3. Boundary conditions

We impose a Dirichlet boundary condition on the whole boundary : p=sin(2πx)cos(2πy) on Γ.

1.4. Configuration & geometry

1.5. Convergence analysis

Table 1. P0 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

9.57939e-01

5.42923e-01

2.78594e-01

5.6416e-02

2.83271e-02

uuhL2

2.78314e-01

1.35505e-01

6.61506e-02

1.30739e-02

6.52889e-03

Table 2. P1 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

1.69091e-01

4.85275e-02

1.26349e-02

5.14523e-04

1.28986e-04

uuhL2

1.66947e-01

4.78222e-02

1.22767e-02

4.92702e-04

1.23431e-04

Table 3. P2 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

2.22396e-02

3.15292e-03

4.07591e-04

3.22962e-06

4.0602e-07

uuhL2

1.73431e-02

2.35603e-03

3.01594e-04

2.33871e-06

2.93291e-07

Table 4. P3 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

2.03629e-03

1.52963e-04

9.81156e-06

1.56186e-08

9.80369e-10

uuhL2

1.37478e-03

1.01811e-04

6.43878e-06

1.00732e-08

6.3051e-10

1.6. Output

The following output example is reproducible using feelpp_toolbox_mixed-poisson-model_2DP2 running on 12 cores with the previous .json and .cfg files on a mesh of typical size h=0.05.

The screenshots are in order : the pressure field, the velocity magnitude field and the velocity field.

pressuremap

velocitymap

fluxfield

1.7. Example : Darcy flow, shower

The input parameters, model and toolbox are the same as in the previous example.

1.8. Boundary conditions

We impose a Dirichlet boundary condition on the whole boundary : p=sin(y)sin(x)+xy216sin(1)(1cos(1)) on Γ.

1.9. Configuration & geometry

1.10. Convergence analysis

Table 5. P0 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

5.34577e-02

2.79542e-02

1.42528e-02

2.85709e-03

1.43102e-03

uuhL2

4.78442e-02

2.43738e-02

1.23471e-02

2.45374e-03

1.22648e-03

Table 6. P1 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

1.97729e-03

5.33807e-04

1.34873e-04

5.41901e-06

1.35843e-06

uuhL2

6.14894e-03

1.61917e-03

3.99372e-04

1.52692e-05

3.81444e-06

Table 7. P2 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

1.40696e-05

1.91059e-06

2.46414e-07

1.95803e-09

2.45484e-10

uuhL2

5.16536e-05

7.12397e-06

9.13825e-07

7.16198e-09

8.98457e-10

Table 8. P3 convergence analysis
h 0.2 0.1 0.05 0.01 0.005

pphL2

2.47985e-07

1.81459e-08

1.16742e-09

1.80373e-12

2.89473e-13

uuhL2

6.13595e-07

4.34515e-08

2.77315e-09

4.19972e-12

1.17702e-12

1.11. Output

The following output example is reproducible using feelpp_toolbox_mixed-poisson-model_2DP2 running on 12 cores with the previous .json and .cfg files on a mesh of typical size h=0.05.

The screenshots are in order : the pressure field, the velocity magnitude field and the velocity field.

pressuremap2

velocitymap2

fluxfield2

1.12. Reference

[BD] Pavel B. Bochev, Clark R. Dohrmann, A computational study of stabilized, low-order C0 finite element approximations of Darcy equations