1. Mathematical Expressions

Following tables present tools to declare and manipulate expressions.

Feel++ Keyword

Description

Px()

Variable \(x\)

Py()

Variable \(y\)

Pz()

Variable \(z\)

cst( c )

Constant function equal to \(c\)

You can of course use all current operators ( + - / * ) and the usual following functions:

Feel++ Keyword

Math Object

Description

abs(expr)

\(|f(\overrightarrow{x})|\)

element wise absolute value of \(f\)

cos(expr)

\(\cos(f(\overrightarrow{x}))\)

element wise cos value of \(f\)

sin(expr)

\(\sin(f(\overrightarrow{x}))\)

element wise sin value of \(f\)

tan(expr)

\(\tan(f(\overrightarrow{x}))\)

element wise tan value of \(f\)

acos(expr)

\(\mathrm{acos}(f(\overrightarrow{x}))\)

element wise acos value of \(f\)

asin(expr)

\(\mathrm{asin}(f(\overrightarrow{x}))\)

element wise asin value of \(f\)

atan(expr)

\(\mathrm{atan}(f(\overrightarrow{x}))\)

element wise atan value of \(f\)

cosh(expr)

\(\cosh(f(\overrightarrow{x}))\)

element wise cosh value of \(f\)

sinh(expr)

\(\sinh(f(\overrightarrow{x}))\)

element wise sinh value of \(f\)

tanh(expr)

\(\tanh(f(\overrightarrow{x}))\)

element wise tanh value of \(f\)

exp(expr)

\(\exp(f(\overrightarrow{x}))\)

element wise exp value of \(f\)

log(expr)

\(\log(f(\overrightarrow{x}))\)

element wise log value of \(f\)

sqrt(expr)

\(\sqrt{f(\overrightarrow{x})}\)

element wise sqrt value of \(f\)

ceil(expr)

\(\lceil{f(\overrightarrow{x})}\rceil\)

element wise ceil of \(f\)

floor(expr)

\(\lfloor{f(\overrightarrow{x})}\rfloor\)

element wise floor of \(f\)

sign(expr)

\(\begin{cases} 1 & \text{if}\ f(\overrightarrow{x}) \geq 0\\-1 & \text{if}\ f(\overrightarrow{x}) < 0\end{cases}\)

element wise sign value of \(f\)

chi(expr)

\(\chi(f(\overrightarrow{x}))=\begin{cases}0 & \text{if}\ f(\overrightarrow{x}) = 0\\1 & \text{if}\ f(\overrightarrow{x}) \neq 0\\\end{cases}\)

element wise boolean test of \(f\)

rand()

random number in \([0,1\)] regenerated at each call

rand(lo,hi)

random number in \([lo,hi\)] regenerated at each call