Heat Transfer Theory
Assumptions
-
you are familiar with heat transfer and have read the introduction.
-
you have read the notations, units and glossary.
1. Equations
which is completed with boundary conditions and initial value
1.1. Convective heat transfer
1.2. Steady case
1.3. Multi-materials
Given a domain \(\Omega \subset \mathbb{R}^d, d=1,2,3\), \(\Omega\) is partitioned into \(N_r\) regions \(\Omega_i,i=1,\ldots,N_r\) corresponding to different materials (solid or fluid). We consider \(\rho_i\), \(C_{p,i}\) and \(k_i\) the material properties defined in each regions \(\Omega_i\). We define also \(\boldsymbol{n}_i\) the outward unit normal vector associated to the boundary \(\partial \Omega_i\).
We assume the operator \(\mathcal{L}\) tel que \(\mathcal{L} T = \rho_i C_{p,i} \frac{\partial T}{\partial t} - \nabla \cdot \left( k_i \nabla T \right)\) is elliptical.
We multiply \(\mathcal{L} u = Q\) by a function test \(v \in \mathbf{V}\) and integrates by part on \(\Omega_i\). Which give:
By the formula of Green, we get
Additivity of the integral, we have
Note that
Use the conditions in the interfaces, we get
Using the implicit Euler method for the time term:
Denoting \(T^k = T(t^k)\), we write the formula in \(t^{ k+1}\), we obtain:
So, the weak wording becomes:
So we have \(a(u_{k+1},v)\) a continuous bilinear form coercive in \(v \in \mathbf{V}\) and \(l(\phi)\) a continuous linear form . We are in a Hilbert space, so we have all the conditions for the application of the Lax-Milgram theorem. So this problem is well posed.
Correct approximation:
We use the Galerkin approximation method:
Let \(\{ \mathcal{T}_h \}\) a family of meshes of \(:\Omega\).
Let \(\{ \mathcal{K}, P, \sum \}\) a finite element of Lagrange of reference of the degree \(k \geq 1\).
Let \(P^k_{c,h}\) the conforming approximation space defined by
To obtain a conformal approximation in V, we add the boundary conditions
Discrete problem is written:
Let \(\{ \varphi_1, \varphi_2, ..., \varphi_N \}\) the base of \(V_h\). An element \(T_h \in V_h\) is written as
Using \(v\) as a basic function of \(V_h\), our problem becomes
The variational problem of approximation is then equivalent to a linear system
Introduce
We write the system in matrix form
1.4. Variational formulation and discretization of the heat equation with radiative boundary conditions on several surfaces
Radiative heat transfer is not yet available in the toolboxes. An application implementing radiative heat is currently available in feelpp/doc/manual/heat. |
Let \(\partial\Omega_D\) and \(\partial \Omega_N\) be the portions of the boundary where Dirichlet and Neumann boundary conditions are applied, respectively. Let us write the variational formulation of the heat equation: find \(T \in H^1((0,T);H^1(\Omega))\) such that, for all \(\phi \in H^1_{0,\partial \Omega_D}(\Omega)\)
When the radiative boundary \(\partial \Omega_R\) is composed of several subsurfaces that can exchange heat through radiation, the associated radiative boundary condition is complex. In fact, each surface receives heat contributions from the other ones, proportionally to the values of the corresponding view factors. From Modest’s book [Radiative_heat_transfer], equation (5.28), the radiative heat flux at point \(x\) of \(\partial \Omega_R\) is
In this equation, \(q=\nabla T \cdot \vec{n}, E_b(x)=\sigma T^4\), \(\epsilon(x)\) is the emittance and \(dF_{x-x'}\) is the view factor between the infinitesimal areas surrounding points \(x,x'\).
Let us now propose a variational formulation for this equation. Let \(\psi \in \mathbb{P}^0_{d}(\partial \Omega_R)\) be discontinuous, piecewise constant basis functions. Functions \(\psi\) are elementwise discontinuous; however, one could choose to work, as a first approximation, with \(\Psi \in P\), where \(P\) a space of discontinuous, piecewise constant basis functions, where discontinuities are not elementwise, but for example discontinuous in correspondence of different radiating surfaces. In the following, we will use \(\psi\) to denote test functions and \(N_h\) to denote the cardinality of the test space. We have
By decomposing \(q(x)=\sum_{i=0}^{N_h} q_i \psi_i(x)\), the first term of the left-hand side gives rise to a mass matrix \(M_{ij} = \int_{\partial \Omega_R} \epsilon_i^{-1} \psi_i\psi_j\). The non-linearity in \(q\) is handled iteratively: the second term on the left-hand side is treated explicitly and moved to the right-hand side. It can be decomposed as a function of coefficients \(q_i\) as \(N_{j}(q) = \int_{\partial \Omega_R} \Big( \sum_{A_k} \frac{1}{A_k} \int_{A_k} (\frac{1}{\epsilon_k}-1) q_k F_{ik} \, dA \Big)\psi_j\). The right-hand side is of the form \(D_j(T) = \int_{\partial \Omega_R} ( \sigma T^4 + \sum_{A_k} \frac{1}{A_k} \int_{A_k} T^4_k F_{jk} \, dA) \psi_j\).
Due to the presence of the fourth power of the temperature and the non-linearity of the equation with respect to temperature and heat flux, two nested iterative loops are proposed. In the following algorithm, \(n\) denotes time indices, \(k\) denotes the indices of the temperature loop and \(l\) denotes the indices of the flux loop.
\begin{algorithm} \caption{Solution of the heat equation with radiative BC on the timestep $\Delta t$.} \begin{algorithmic} \STATE $T^{n}=T^{n,0}$, $q^{n}=q^{n,0,0}$ \STATE $T^{n+1,0} = Heat_{\Delta t}(T^n,q^{n})$; \STATE $q^{n+1,0,0} = q^{n}$ \WHILE{$||T^{n+1,k+1} -T^{n+1,k}||/||T^{n+1,0}|| > \tau_T$} \STATE $T^{n+1,k} \leftarrow T^{n+1,k+1}$ \STATE $q^{n+1,k,0} = M_{ij}^{-1} (D_j(T^{n+1,k})-N_{ij}(q^{n+1,k+1,0}))$ \WHILE{$||q^{n+1,k,l} -q^{n+1,k,l-1}||/||q^{n+1,k,0}|| > \tau_q$} \STATE $q^{n+1,k,l-1} \leftarrow q^{n+1,k,l}$ \STATE $q^{n+1,k,l} = M_{ij}^{-1} (D_j(T^{n+1,k})-N_{j}(q^{n+1,k,l-1}))$ \ENDWHILE \STATE $q^{n+1,k+1,0} \leftarrow q^{n+1,k,l}$ \STATE $T^{n+1,k+1} = Heat_{\Delta t}(T^{n+1,k},q^{n+1,k+1,0})$ \ENDWHILE \STATE $T^{n+1} \leftarrow T^{n+1,k+1}$ \STATE $q^{n+1} \leftarrow q^{n+1,k+1,0}$ \end{algorithmic} \end{algorithm}
2. Bibliography
[Radiative_heat_transfer] Modest, M.F., Radiative Heat Transfer, Elsevier Science (2013) doi.org/10.1016/C2010-0-65874-3